Nardosinone Suppresses RANKL-Induced Osteoclastogenesis and Attenuates Lipopolysaccharide-Induced Alveolar Bone Resorption

نویسندگان

  • Chenguang Niu
  • Fei Xiao
  • Keyong Yuan
  • XuChen Hu
  • Wenzhen Lin
  • Rui Ma
  • Xiaoling Zhang
  • Zhengwei Huang
چکیده

Periodontitis is a chronic inflammatory disease that damages the integrity of the tooth-supporting tissues, known as the periodontium, and comprising the gingiva, periodontal ligament and alveolar bone. In this study, the effects of nardosinone (Nd) on bone were tested in a model of lipopolysaccharide (LPS)-induced alveolar bone loss, and the associated mechanisms were elucidated. Nd effectively suppressed LPS-induced alveolar bone loss and reduced osteoclast (OC) numbers in vivo. Nd suppressed receptor activator of nuclear factor-κB ligand (RANKL)-mediated OC differentiation, bone resorption, and F-actin ring formation in a dose-dependent manner. Further investigation revealed that Nd suppressed osteoclastogenesis by suppressing the ERK and JNK signaling pathways, scavenging reactive oxygen species, and suppressing the activation of PLCγ2 that consequently affects the expression and/or activity of the OC-specific transcription factors, c-Fos and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1). In addition, Nd significantly reduced the expression of OC-specific markers in mouse bone marrow-derived pre-OCs, including c-Fos, cathepsin K (Ctsk), VATPase d2, and Nfatc1. Collectively, these findings suggest that Nd has beneficial effects on bone, and the suppression of OC number implies that the effect is exerted directly on osteoclastogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GF109203X attenuates RANKL-induced osteoclastogenesis and suppresses osteolysis in a mouse model

Aseptic loosening after joint replacement is primarily caused by wear particle-induced osteolysis, which shortens the life of the prosthesis. Research shows that there are many osteolytic cytokines around prostheses that are loosened due to wear particles. Among these, receptor activator of nuclear factor κB ligand (RANKL) is the only factor that can directly stimulate the formation and functio...

متن کامل

RANKL Signaling and Osteoclastogenesis Is Negatively Regulated by Cardamonin

Bone loss/resorption or osteoporosis is a disease that is accelerated with aging and age-associated chronic diseases such as cancer. Bone loss has been linked with human multiple myeloma, breast cancer, and prostate cancer and is usually treated with bisphosphonates, and recently approved denosumab, an antibody against receptor activator of NF-κB ligand (RANKL). Because of the numerous side eff...

متن کامل

Iguratimod prevents ovariectomy-induced bone loss and suppresses osteoclastogenesis via inhibition of peroxisome proliferator-activated receptor-γ

Iguratimod is known for its anti‑inflammatory activities and therapeutic effects in patients with rheumatoid arthritis. It has previously been demonstrated that iguratimod attenuates bone destruction and osteoclast formation in the Walker 256 rat mammary gland carcinoma cell‑induced bone cancer pain model. Therefore, it was hypothesized that iguratimod may additionally exhibit therapeutic effec...

متن کامل

Treatment of OPG-deficient mice with WP9QY, a RANKL-binding peptide, recovers alveolar bone loss by suppressing osteoclastogenesis and enhancing osteoblastogenesis

Osteoblasts express two key molecules for osteoclast differentiation, receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG), a soluble decoy receptor for RANKL. RANKL induces osteoclastogenesis, while OPG inhibits it by blocking the binding of RANKL to RANK, a cellular receptor of RANKL. OPG-deficient (OPG-/-) mice exhibit severe alveolar bone loss with enhanced bone resorption. ...

متن کامل

Polymethoxy flavonoids, nobiletin and tangeretin, prevent lipopolysaccharide-induced inflammatory bone loss in an experimental model for periodontitis.

Nobiletin, a polymethoxy flavonoid (PMF), inhibits systemic bone resorption and maintains bone mass in estrogen-deficient ovariectomized mice. This study examined the anti-inflammatory effects of PMFs, nobiletin, and tangeretin on lipopolysaccharide (LPS)-induced bone resorption. Nobiletin and tangeretin suppressed LPS-induced osteoclast formation and bone resorption and suppressed the receptor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017